Extended Abstract

Motivation In our previous project, we developed a retrieval-based method, RINGER [1]], utilizing
abstract rules and achieved encouraging results in math reasoning. However, merging rules requires
extensive searching time to find optimal rules with low NLLs, and thus, the method is hard to
scale up. To unlock the full potential of RINGER and enable it to scale to larger Chain-of-Thought
(CoT) datasets, we propose fine-tuning a compact, efficient model that learns to perform rule merging
directly. By using Direct Preference Optimization (DPO) to align this smaller model with high-quality
rule merges, we aim to preserve RINGER’s explainability and generalization benefits while improving
efficiency. This integration not only reduces compute requirements by over 7 but also sets the stage
for scaling RINGER across broader domains and problem distributions.

Method Our method follows a two-step framework. First, we fine-tune a lightweight rule-merging
model using DPO. This process unfolds in two phases: Phase I focuses on merging pairs of
Chains-of-Thought (CoT—CoT), while Phase II extends this to merging an existing rule with a
third CoT (Rule—CoT). In phases I, a powerful pretrained LLM generates multiple candidate merged
rules, including a special “[NO MERGE]” option. Each candidate is scored using a fixed judge
model based on its average Negative Log-Likelihood (NLL) over associated problems, penalized
for verbosity. All pairwise comparisons of candidates are turned into preference tuples, which are
used to fine-tune a smaller model with LoRA. The resulting Phase II merger model replaces the
original merger model in the RINGER system. During inference, the model proposes a single merged
rule, which is evaluated against original CoTs using NLL across multiple judge models. The rule
is accepted into the database only if it improves generalization under three predefined filters. This
approach enables scalable rule training with reduced computational cost.

Implementation We used the OpenR1-Math-220k dataset and constructed a 350-problem training
set and 70-problem test set focused on competition-level algebra questions. For DPO training, we
generated preference data in two phases: CoT-CoT merging and Rule—-CoT merging, yielding 10,762
total preference tuples. Candidate merges were produced using Qwen3-32B (Phase I) and scored
with Qwen3-14B using a reward function combining NLL and a length penalty. We fine-tuned a
Qwen3-4B model via DPO with LoRA. The final Phase II merger model replaced the original large
merger in the RINGER pipeline. Inference-time rule evaluation was done using a judge ensemble of
Qwen3-14B and Phi-4 to ensure cross-model robustness.

Results Our analysis reveals three key qualitative improvements from DPO fine-tuning. First,
the fine-tuned Qwen-3-4B model generates 50% fewer singleton rules (103 vs. 199) and more
multi-CoT rules (e.g., 21 rules covering 3 CoTs vs. 10), indicating stronger generalization and reuse
capabilities. Second, with shorter and more predictive rules. Compared to the 32B RINGER model
and pre-trained conterpart, the fine-tuned Qwen-3-4B model reducing the longest rule by 39% (1798
vs. 2927 tokens) and lowering average NLL (8.12 vs. 8.70) respectively. Third, It completes all
training problems without Out Of Memory (OOM) exception (vs. 28 failures for the 32B model) and
maintains comparable accuracy (44/70 vs. 41/70) while requiring over 7x less compute.

Discussion Beyond the quantitative improvements, we observe that many generated rules include
explicit token or character counts despite never being prompted to do so. This behavior indicates that
the fine-tuned model has an implicit understanding of conciseness as a quality signal. This suggests
that the model has effectively learned from the reward design. However, two limitations remain.
First, although “[NO MERGE]” was included as an abstention option during training, the model
never outputs it, indicating that relative preference training (as used in DPO) may be insufficient to
enforce abstention behavior. Second, we observe occasional overgeneralization, where the model
merges conceptually unrelated CoTs into a single divergent rule. These incoherent merges reduce
explainability and make such rules difficult to further merge and unreliable during inference, posing a
major limitation to scaling the framework across large and diverse CoT dataset.

Conclusion This work demonstrates that a DPO fine-tuned Qwen-3-4B model can effectively
replace a much larger 32B rule merger in the RINGER framework, achieving comparable accuracy
(44/70 vs. 41/70) while reducing computational power by over 7x. This breakthrough addresses
RINGER’s primary bottleneck, its rule database construction cost. This, in turn, enables scaling
to large CoT datasets and evaluating generalization on benchmarks like MATH-500 and AIME.
Qualitative analysis confirms that the fine-tuned model produces more concise and generalizable
rules. To further improve RINGER framework, future work should filter out mismatched problem
types during merging and incorporate DPO with supervised fine-tuning (SFT) to explicitly teach
abstention behavior in unproductive cases. These enhancements will support the construction of
cleaner, more explainable rule databases for generalizable mathematical reasoning.

Reinforce Rule Merging for Rule-Guided LLM
Reasoning

Yifan Zhang
Department of Computer Science
Stanford University
yzh1230@stanford.edu

Abstract

In the previous project RINGER, we present a framework for distilling abstract
reasoning rules from diverse chain-of-thought (CoT) trajectories and applying them
via retrieval-augmented generation. While direct preference methods like Direct
Preference Optimization (DPO) and Group Relative Policy Optimization (GRPO)
have recently been used to incentivize Large Language Models (LLMs) to produce
CoTs before answering, the cost of collecting high-quality reasoning data and
the difficulty of enhancing reasoning generalization and robustness remain major
challenge to their broader applicability. Inspired by human abstract reasoning,
we first prompt a large LLM to merge multiple CoTs into concise rules that
minimize negative log-likelihood (NLL). We then curate these low-NLL rules
into preference pairs and train a compact “rule-merger” model using DPO, which
reframes alignment as a stable, closed-form classification loss. At inference, this
small model can merge CoTs into abstract rules based on the preference, and
enhance the efficiency of RINGER framework. On our curated math benchmarks,
the DPO-trained rule-merger matches the performance of the original RINGER
system while achieving significant improvement in efficiency, demonstrating a
practical path toward scalable, generalizable LLM reasoning.

1 Introduction

LLMs have demonstrated emerging reasoning capabilities across various domains, including
arithmetic, logic, and symbolic manipulation, essentially unlocked by Chain-of-Thought prompting,
where models generate intermediate reasoning steps before providing final answers. Recently,
researchers have used reward or preference-based methods, such as DPO [2] or GRPO [3]], to push
the model to generate a thinking CoT before generating the response. This research direction has
presented promising performance [4}15]]. However, collecting reasoning data incurs a significant cost,
and the models still struggle to generalize to multiple domains. Inspired by human cognition, we
studied whether these reasoning CoT data can be merged into more abstract rules that can be applied
to multiple types of questions. Then, these merged rules are used during LLM reasoning via retrieval
augmentation generation. We hypothesize that abstract reasoning rules, distilled from diverse CoT
trajectories, can generalize reasoning patterns more effectively than raw chains of thought. In our
previous project, we developed a retrieval-based method, RINGER [1]], utilizing abstract rules and
achieved encouraging results in math reasoning. However, merging rules requires extensive searching
time to find optimal rules with low NLLs, and thus, the method is hard to scale up.

To address these challenges, we utilize the DPO method to train a small model that learns the
rule-merging preference, enabling us to scale the RINGER system in advance. DPO reframes
alignment as a closed-form classification loss, eliminating the need for explicit reward modeling
and sampling during training. DPO has proven competitive with PPO-based RLHF in controlling

Stanford CS224R 2025 Final Report

generation quality and alignment, while being far more stable and computationally efficient. Here,
our goal is to train a small model that focuses on merging reasoning CoTs, which can generate
answers with lower NLLs. Then, the small model is used for searching for better reasoning rules.

Our DPO training method proceeds in three stages: (1) prompt a large LLM to merge multiple CoTs
into concise abstract rules that minimize NLL, (2) extract and curate these rules with lower NLLs
and length penalty to construct preference pairs, and (3) train a compact “rule-merger” model with
DPO to reproduce rule merging behavior. At inference, this small model retrieves and applies rules to
guide QA, combining the interpretability of symbolic rules with the flexibility of neural networks.

Empirical results on our curated math benchmarks demonstrate that our DPO-trained rule-merger
achieves comparable performance to the original RINGER model, while offering more than 7 times
better efficiency.

2 Related Work

Reinforcement Learning from Human Feedback (RLHF) has been instrumental in aligning LLMs
to human preferences, typically by training a reward model on ranked outputs and fine-tuning via
PPO [6]. Despite its success in chat and summarization, RLHF requires careful reward-model fitting
and hyperparameter tuning, often leading to instability. DPO addresses these issues by deriving an
analytical optimal policy under a preference-based loss, enabling direct fine-tuning of the LLM with a
simple classification objective [2]. Recent extensions include Calibrated DPO (Cal-DPO) [7], which
further refines reward scaling for improved alignment, and a comprehensive survey categorizing DPO
variants across data strategies, learning frameworks, and constraint mechanisms.

Chain-of-Thought (CoT) prompting [8] elicits intermediate reasoning by demonstrating step-by-step
solutions in few-shot examples, leading to substantial improvements on math benchmarks (e.g., PaLM
540B achieved 57% on GSM8K). A recent meta-analysis [9] confirms CoT’s outsized benefits for
math and logic tasks while noting diminishing returns on purely linguistic tasks. Variations such as
Self-Consistency aggregate multiple CoT samples to improve robustness, while Tree-of-Thought
explores branching reasoning paths. Retrieval-augmented Generation (RAG) integrates external
knowledge, such as textbook snippets, to ground LLM responses and reduce the likelihood of
hallucinations. In educational contexts, RAG improves the trade-offs between preference and
correctness for middle-school math QA. Other work investigates multi-step retrieval and backtracking
corrections to enhance multi-hop reasoning in QA systems [10]. Many researchers have also combined
CoT with reward and preference training to create reasoning models [[L1]]. Despite this progress,
collecting reasoning data requires considerable effort and is challenging to generalize across diverse
domains in a single model. Our approach utilizes DPO to train a small model to learn how to merge
CoT into more generalized and abstract rules, enabling these rules to better guide the model in
generating the correct answers.

3 Preliminary Work

Our previous work, RINGER [l1], introduced a novel framework to enhance the reasoning capabilities
of LLMs by applying generalized rules extracted from CoTs. Unlike traditional inference-time
reasoning or reinforcement learning (RL)-based tuning, RINGER provides a transparent and
data-efficient mechanism for guiding model reasoning while reducing inference cost and improving
explainability.

As shown in Figure [I] RINGER operates in two main phases: (1) Rule Generalization, which
transforms CoT explanations into abstract, reusable rules; and (2) Rule-Based Inference, which
retrieves and applies those rules to guide model reasoning at inference time.

RINGER’s rule generalization phase consists of four components: (1) a Data Formatter, which
standardizes both problem statements and CoTs into structured formats for consistency and conceptual
retrieval; (2) a Rule Database, which stores generalized rules indexed by problem type and tracks
rule performance via average NLL; (3) a Rule Merger, which uses an LLM to combine retrieved
rules and new CoT into candidate generalized rules; and (4) a Rule Selector, which scores and filters
these candidates using multi-model NLL evaluations to retain only high-quality generalizations.

Rule Generalization

—————3 "Question (Q) + Original CoT (CoT') + Answer (A)' ————————————3|
Judge Models|

b il & 0L :
INLL(ylz,6) = ~— 3 (7 3 towpe, (yely- m) :

"Question (Q) + Candidate 2 + Answer (A)" :
@ e *

P —— _—
[Prohlem slatemem{ﬂ')] [Retrieved Rule (Rhm)} LLM {Imt'“m‘lte"“g"’\'L‘Lm-mmrr > NLL e]

T

Data Sample (Q,
CoT, A)
Data Formatter

"Question (Q) + Candidate 1+ Answer (A)"

Original CoT (CoT")

"Question (Q) + Candidate n + Answer (A)"

00 NEL miote; < NED o]

Retrieve

{€€=——=Yes: Store Merged Rule-
€——No: Store as New Rule’

o | Answer (L)

Rule-Based Inference

Figure 1: Overview of Reasoning at INference time with GEneralized Rules (RINGER). It involves
two main phases: Rule Generalization and Rule-Based Inference.

During inference, RINGER applies two components to solve new problems. The Rule Retriever
reformats the test query and retrieves the most conceptual relevant rules from the database. The
top-ranked rule is passed to the Rule-Guided Reasoner, which prompts an LLM to generate a
structured reasoning trace and final answer, guided by the selected rule’s steps and heuristics.

RINGER demonstrated encouraging empirical performance and interpretability advantages over
standard prompting baselines. On a test set of 70 competition-level algebra problems, it achieved
58.6% accuracy, outperforming all benchmarks, while reducing output token length by over 4x,
highlighting its efficiency. Rule generalization successfully consolidated reasoning patterns, with
several rules reused across up to 10 problems, confirming high cross-problem applicability. Moreover,
RINGER enhanced explainability, as each rule is transparent and editable. While RINGER framework
is promising, merging CoTs into rules requires heavy computational time and power. To address this
issue, in this project, we utilize DPO training to fine-tune a small model that merges CoTs based on
NLL preference.

4 Method

Our method consists of a two-step framework designed to fine-tune a rule merger using DPO and
subsequently integrate the fine-tuned rule merger into the RINGER system with some modifications.
As illustrated in Figure[2] the framework includes:

* DPO-Based Rule Merger Fine-Tuning
* Integration with the RINGER Framework

Below, we describe each step of the framework in detail.

4.1 DPO-Based Rule Merger Fine-Tuning

Our DPO-based fine-tuning step consists of two sequential phases. Phase I focuses on training the
model to merge pairs of CoTs into generalized rules. Phase II builds on the model from Phase I,
enabling it to handle both CoT-CoT and Rule-CoT merging. Together, these two stages fine-tune the
model to develop broader rule generalization capabilities: the Phase I Merger Model is used as the
starting point for Phase II, and the final Phase II Merger Model is then integrated into the RINGER
framework.

DPO Merger Training

- "Question (Q) + Candidate 1 + Answer (A)"

Previous K e o 1 T 1
Ringer Rule O Merge: : Judge Model NLLi(yle,0) = -5 ; log po, (yt[y <+, x)
Database "Question (Q) + Candidate n + Answer (A)"
Pre-trained LLM
Unmerged Rules Phase | Tuples DPO Preference Tuples Reward = ~NLL — X - max(0, L — Liprest)
-
Merged Rules

DPO Fine-Tuning with LoRA

"Question (Q) + Candidate 1 + Answer (A)" : o [
@%Mem—} : : NLLi(yle,6) = - Jl ; Tog po, (wily<t,) E
"Question (Q) + Candidate n + Answer (A)" e e ST ¢
Phase | Merger Model
R 1
II : Reward = ~NLL — A+ max(0, L — Lihpeah) E

COT/Rule
Pairs

DPO Fine-Tuning with LoRA.

&

Phase 2 Mgrger Model

Rule Generalization

Data Sample (Q,
CoT, A) Replace Rule Merger Model

[Data Formatter }—){ Original CoT (CoT")

"Question (Q) + Original CoT (CoT') + Answer (A)"

erq:—)i "Question (Q) + Merged Rule + Answer (A)" }J

. Lo 1 & '

[Prohlem Statement (D')] [Retrleved Rule (Rpese) [Phase 2 Fine-tuned LLM \NLL(y[z,0) = — s Z (F E log palye|y<is x)) 1
| = = '

~ ———————— A R

Retrieve Rule e Lower NLL on ower Average NI Lower NLL on
»| Datab 9 Majority Sample: on All Samples. Question Q

Figure 2: Overview of DPO-Based Rule Merger Fine-Tuning and its Application in RINGER

4.1.1 Candidate Rules Generation. From the Rule Database constructed in preliminary work, we
extract training samples in two phases to support DPO fine-tuning. The goal is to construct a dataset
for fine-tuning a rule-merging model that can synthesize generalized reasoning rules from multiple
CoTs. In both phases, the model that generates rule candidates is prompted using a structure template
designed to encourage conciseness and to allow abstention via a special token “[NO MERGE]” when
a merge is unproductive.

In Phase I, we construct a balanced dataset of CoT pairs that are either (1) derived from the
same underlying rule (potentially mergeable), or (2) from unrelated reasoning paths (potentially
unmergeable). This 50/50 mix enables the model to learn when to merge and when to perform no
merge. For each CoT pair [(Q1,CoTy, A1), (Q2,CoTs, As)], we apply a powerful pre-trained LLM
with strong generalization capabilities to synthesize n candidate generalized rules {Rule; }?_;. Each
candidate aims to express a generalized reasoning pattern that supports solving both @)1 and Q5.

In Phase II, we build on the CoT—CoT (Phase I) merging setup by introducing a third CoT to support
further generalization. Specifically, we select rule groups from the Rule Database that were previously
created by merging at least three distinct CoTs. For each group, we enumerate all CoT pairs and
apply the Phase I Merger Model to synthesize a candidate rule ([Q1, Q2], Ruleq; 23, [A1, A2]).
We then pair this rule with a third CoT (Q3,CoTs, A3) from the same group (not used in the
initial merge), forming an input pair of the form [([Q1, Q1], Rule(; 2y, [A1, A2]), (@3, CoTs, As3)].
Using the fine-tuned Phase I Merger Model, we generate n candidate rules {Rule; }?* ; aimed at
generalizing reasoning across all three questions [(Q1, Q2, Q3]

4.1.2 DPO Rule Selection. Each candidate rule {Rule; }?"_; is evaluated by its ability to generate
correct answers across the relevant question set. For each question, we format the input prompt as:

Question: {Q}\nChain of Thought: {Rule}\nFinal Answer:

Let z; be the prompt constructed from (); and Rule;, and let 3/; be the ground truth answer of length
T for j = 1,2 in Phase I and j = 1, 2, 3 in Phase II. The average NLL of the rule is computed as:

NLL; = —

El i

k T;
Z Z 0g po (Yj,t1Yj,<t: %),
j=1 "7 t=1

where £ = 2 in Phase I and £ = 3 in Phase II, and 6 is the fixed judge model.

To discourage overly verbose rules, we apply a length-aware reward function:

R; = —NLL; — X - max(0, L; — Lyresh),

where L; is the character length of Rule;, Ly is a predefined length threshold, and A is a length
penalty coefficient. This reward function encourages concise, reusable rules.

We also compute a baseline reward corresponding to the special abstention candidate “[NO MERGE]”,
where no rule merging is performed. To compute it, we format the CoTs using the same prompt
structure as candidate rules and evaluate their weighted average NLL. In Phase I, we compute it as:

T
1 1
NLLpaseline = _5 (ZInge yl t|y1 <t>x1 + al ZIOgPQ y2 t|y2 <t>x(2:))

In Phase II, we reuse the prompts x;, o generated from Rule; and compute the third using the
original CoT:

2 T; Ts
1 1 1 CoT
NLLygseine = =5 | D 7+ T Zlogpe Wialys.<ow) + 7 > "log po(ys.ilys,<t, 25°T)
=1 t=1 t=1
The corresponding baseline reward Rpyseline = —NLLpaseline — A - max(0, L; — Lynesh) i used for the

“[NO MERGE]” candidate.

All n + 1 candidates (including “[NO MERGE]”) are scored and ranked by their reward values. To
construct DPO preference data, we enumerate all (";1) unordered candidate pairs. For each pair

(2,7), if R; > Rj, we record a preference tuple:
chosen =Rule;, rejected =Rule;

This ensures the model is trained to prefer concise, high-quality rules and to abstain when merging is
unproductive, with the resulting preference tuples used for downstream DPO fine-tuning.

4.1.3 DPO Training with Preference Pairs. Using the collected preference tuples, we fine-tune a
smaller rule-merging model via DPO. For each prompt and preference tuple (chosen, rejected),
the DPO objective encourages the model to assign higher likelihood to the preferred output, enabling
it to learn when and how to merge reasoning traces effectively.

We implement fine-tuning using Low-Rank Adaptation (LoRA), a parameter-efficient method that
inserts trainable low-rank matrices into selected layers of the model. Only these injected parameters
are updated during training, while the base model remains frozen—allowing for efficient and scalable
adaptation.

In Phase I, we first use a powerful, pre-trained LLM to generate candidate rules for CoT-CoT merges.
The resulting preference tuples are used to fine-tune a smaller model from scratch, producing the
Phase I Merger Model, a lightweight rule merger capable of synthesizing generalized rules from
two reasoning traces.

In Phase II, we reuse the fine-tuned Phase I Merger Model to generate candidate merges between
an existing rule and a third CoT. These new preference tuples, combined with those from Phase I,
are then used to fine-tune a model from scratch, equipping it with the ability to handle increasingly
abstract Rule—CoT merges. The resulting Phase II Merger Model is then integrated into the RINGER
framework.

The following pseudocode (1| outlines the overall DPO merger training process:

Algorithm 1 DPO Fine-Tuning for Rule Merging

Inputs: CoT-CoT pairs or Rule-CoT pairs from rule database
LLM: Rule-merging model (pre-trained or fine-tuned)
JudgeModel: NLL-based evaluation model

n: Number of candidate merges per example

Z: Number of training samples

1: for:=1to Z do

2 Sample (Q1,CoTy, A1), (Q2,CoTs, Ay) from rule database > Phase I

3: or construct ([Q1, Q2], Rule; 93, [A1, Az]), (Q3,CoTs, A3) > Phase 1T

4: Use LLM to generate n candidate merged rules {Rule; }?* ;

5: Append “[NO MERGE]” as the baseline candidate

6: for each candidate rule Rule; do

7 Compute average NLL over question-answer pairs

8: Compute reward R; = —NLL; — A - max(0, L; — Lnresh)
9: end for

10: Rank all n + 1 rules by reward

11: for each pair (7, k) among n + 1 rules do

12: if R; > Ry then

13: Store preference tuple (prompt, chosen = Rule;, rejected = Ruley)
14: end if

15: end for

16: end for

17: Train the LLM using DPO objective on all collected preference tuples

4.2 Integration with the RINGER Framework

In this step, we modify the RINGER system to leverage the smaller, fine-tuned Phase II Merger
Model for efficient and accurate inference. While the overall structure of the RINGER Rule
Generalization pipeline remains the same, we update the Rule Merger and Rule Selector components
to reflect the capabilities of the Phase II Merger Model.

4.2.1 Rule Merger. For each new question-CoT-answer tuple (@), CoT, A), we replace the large,
pre-trained LLM previously used for rule merging with the fine-tuned Phase IT Merger Model. This
smaller model is trained specifically for rule generalization and has shown strong performance on the
task. Instead of generating n candidate rules as in the original RINGER system, we now generate
only one candidate rule due to the high reliability of the fine-tuned model.

4.2.2 Rule Selector. Like the original RINGER system, we evaluate both the merged candidate rule
and the original CoT using judge models. We construct prompts in the same format:

Question: {Q}\nChain of Thought: {Rule}\nFinal Answer:

The average NLL across m judge models is computed as:

m T
1 1
NLL(y|r,0) = - § <T E log po, (y¢|ly < t,x))
=1

t=1

To ensure the quality of rule generalization, we apply three filters before accepting a merged rule into
the Rule Database:

1. The merged rule must have a lower NLL than the original CoT on the new question.

2. The merged rule must have a lower average NLL than the existing rule across its previously
associated samples.

3. More than half of the previously associated samples must show reduced NLL under the
merged rule.

If the merged rule passes all three filters, it replaces the retrieved rule in the Rule Database. Otherwise,
the reformatted new CoT is stored as a new rule. This adjustment enables efficient training while
preserving or improving the quality of rule generalization.

S Experimental Setup

5.1 Data

5.1.1 Preliminary Work. In our preliminary work, we utilized the open-r1/0penR1-Math-220k
dataset [[12], which contains 220,000 mathematical problems, each accompanied by 2—4 reasoning
traces generated by DeepSeek R1 [4] and verified by Math Verify [13]. From this corpus, we selected
5,000 Algebra problems sourced from Olympiad competitions, each with exactly two correct and
verified traces. These samples, represented as (@), CoT, A), form our working dataset. We randomly
chose 70 problems as our test set. Due to computational limitations, we did not train on the full
remaining 4,930 problems. Instead, for each test problem, we identified its 5 most relevant problems
from the remaining pool, resulting in a targeted 350-example training set. This subset was used to
build an initial Rule Database in our preliminary work.

5.1.2 DPO-Based Rule Merger Fine-Tuning. We constructed preference data in two stages to
support DPO fine-tuning of the rule-merging model.

5.1.2.1 Phase I. We focused on CoT-CoT merging. We began with the RINGER Rule Database,
which contains 113 unmerged rules (each linked to a single problem) and 64 merged rules (each
covering two or more problems). From this database, we sampled 430 potentially mergeable pairs
and 430 potentially unmergeable pairs. These 430 pairs per category were split into 380 training pairs
and 50 test pairs. For each pair, we generated 4 candidate merged rules using a large pretrained LLM
with the updated prompt[A.T] along with a “[NO MERGE]” baseline. The candidates were scored
using the reward function, and all (4“) = 10 pairwise preferences were recorded. This yielded

2
2,530 preference tuples for Phase I training.

5.1.2.2 Phase II. We extended this setup to Rule—CoT merging. We selected 21 merged rules from
the Rule Database, each constructed from at least 3 distinct CoTs. For every merge trial, 4 candidate
rules and one “[NO MERGE]” baseline were evaluated using the same reward function, and 10
pairwise preference tuples were recorded. This produced 8,232 preference tuples for Phase II.

Together, Phases I and II yielded a total of 10,762 preference tuples, which were used to fine-tune the
final Phase I merger model.

5.1.3 Integration with the RINGER Framework. To evaluate the impact of the Phase II merger
model on end-to-end performance, we removed the original RINGER training and test sets and
re-sampled 70 test problems and 350 training problems from the remaining pool of 4,580 Algebra
problems, using the same procedure as in the original RINGER evaluation.

5.2 Evaluation Setting

To assess the effectiveness of the fine-tuned Phase II Merger Model and its integration into the
RINGER framework, we adopt and extend the original RINGER. Specifically, we evaluate the
model’s performance on a newly sampled test set of 70 problems to ensure a fair and controlled
comparison. Our evaluation focuses on the following four dimensions:

Answer Accuracy: We extract the model’s predicted final answer and compare it against the
ground-truth label. Each response is manually reviewed to ensure correctness. Our primary
requirement is that the integration of the DPO-trained merger must not degrade accuracy.

Rule Consolidation Rate: We analyze the distribution of how many CoTs are consolidated into
generalized rules. A meaningful rule-merging mechanism should actively merge similar CoTs. If
most rules remain unmerged, the RINGER framework provides limited generalization benefits.

Rule Conciseness: We compute the number of output tokens of the longest generated rule. This
reflects the conciseness and interpretability of the rules. With our reward function, we expect the
fine-tuned model to not produce longer, more verbose reasoning steps.

Rule Quality: To evaluate generalization quality, we compute the weighted average NLL of all rules
on associated problems. Lower NLL indicates stronger alignment between the rule and the solution.
This also aligns with our DPO training objective, which favors rules with predictive alignment.

Together, these metrics provide a comprehensive view of both functional performance and structural
quality, allowing us to assess whether the Phase I Merger Model offers meaningful improvements
over the original RINGER baseline.

5.3 [Experimental details

Below, we provide the implementation details of our DPO fine-tuning and its application in RINGER,
which follows the approach design illustrated in Section 4.

5.3.1 DPO Fine-Tuning.

5.3.1.1 Phase I. We used the large pretrained model Qwen3-32B [14]] from Alibaba, with maximum
token limit of 22,000, temperature of 0.1, and top-k of 50, to generate 4 candidate merged rules
per CoT—CoT pair. Candidate rules were scored using a judge model (Qwen3-14B) based on NLL,
with a length-aware penalty (length threshold of 7,000 characters and length penalty coefficient of
0.00025) applied.

Using the resulting preference tuples, we fine-tuned a smaller model, Qwen3-4B, from scratch via
DPO, with a maximum sequence length = 32,768, 8 = 0.02, learning rate = 1e-5, and 10 training
epochs. LoRA was applied for efficient tuning with » = 8, a = 16, dropout = 0.1

5.3.1.1 Phase II. We followed the same setup, but used the fine-tuned Phase I Merger Model to
generate candidate rules. DPO fine-tuning was then conducted on a new Qwen3-4B instance.

5.3.2 Integration into RINGER. For Phase III, we adopted the original framework’s settings with
one key change: the rule-merging LLM was replaced by our Phase II Merger Model. All other
components and parameters remained consistent with the original RINGER system. For scoring, we
used a judge model ensemble consisting of Qwen3-14B and Phi-4 [15] by Microsoft to improve
robustness and cross-model agreement.

6 Results

6.1 Quantitative Evaluation

of CoTs Merged per Rule 1 2 3 4 5 6 7 8 10+ OOM NLL LongestRule
QWen-2.5-32B" 113 43 8 5 1 0 3 1 3 28 2927
QWen-3-4B 199 41 10 3 4 0 1 0 O 0 8.70 1924
QWen-3-4B Fine-Tuned 103 52 21 6 7 1 1 1 0 0 8.12 1798
Table 1: Distribution of CoTs’ consolidation into Rules.

Test Set Accuracy Compute Time GPU
QWen-2.5-32B" 41/70 (58.6%) * 36 hr H200 140GB
QWen-3-4B 42/70 (60%)
QWen-3-4B fine-tuned 44/70 (62.86%) 5 hr H100 94GB

Table 2: OpenR1 Mathematics Test Set Accuracy Score

* Results from preliminary project RINGER.
* Accuracy is not directly comparable, as the test sets differ. However, both were randomly sampled from the
same problem pool.

Note: All models listed in the tables are used for rule database construction. For accuracy evaluation,
we do not modify RINGER’s inference pipeline. The model used in RINGER’s inference pipeline is
Qwen-2.5-14B-Instruct.

6.2 Qualitative Analysis

Rule Consolidation Behavior. As shown in Table [T} the DPO fine-tuned QWen-3-4B model generates
approximately 50% fewer singleton rules (103 vs. 199) compared to its pre-trained counterpart, indicating
improved consolidation of CoTs into shared rules. Notably, it forms more rules with three or more associated

CoTs (e.g., 21 rules covering 3 CoTs vs. 10), showing better generalization across samples. This consolidation
behavior closely mirrors that of the prior QWen-2.5-32B model, despite the fine-tuned model being 8x smaller.

Rule Quality. The DPO fine-tuned model also improves in terms of rule conciseness and NLL. Its longest rule
is 1798 tokens, which is shorter than the baseline Qwen-3-4B model’s longest rule (1924 tokens), and nearly
39% shorter than the prior QWen-2.5-32B model’s longest rule (2927 tokens). The average weighted NLL (8.12)
is also lower than the baseline (8.70 from pre-trained QWen-3-4B model), indicating that the reward function
successfully encouraged the model to generate higher-quality rules. These trends suggest the model is not only
merging more CoTs but doing so in a more consistent and efficient manner.

Robustness and Efficiency. Unlike the 32B baseline, which encountered OOM issues on 28 problems, the DPO
fine-tuned QWen-3-4B models successfully completed all 350 training data without exception. Although the
test sets differ, making direct accuracy comparisons inappropriate, both were randomly sampled from the same
problem pool. In this context, the DPO fine-tuned model achieved 44/70 accuracy on the new test set, compared
to 41/70 reported for the RINGER baseline. This suggests that accuracy has not degraded, indicating that the
fine-tuned model has the strong capability in rule generalizes despite its smaller size. (Note that The pre-trained
Qwen-3-4B achieves 42/70. Because 80% of the CoTs are unmerged, so essentially it just extracts the most
relevant CoT and uses that to solve the new problem, similar to our Retrieval _CoT benchmark in the preliminary
work, which had 39/70 accuracy). More importantly, it achieves this with significantly improved efficiency:
requiring only 5 GPU hours on a 94GB H100 GPU, compared to 36 GPU hours on a 140GB H200 GPU for the
32B baseline. These results demonstrate that with targeted fine-tuning, smaller models can serve as stable and
efficient alternatives to much larger models for complex rule-based reasoning.

7 Discussion

Beyond quantitative results, our analysis surfaced several behavioral patterns and limitations in the DPO
fine-tuned merger model that offer valuable insights for future development.

First, manual inspection revealed that the model has internalized the length penalty from the reward function.
Many generated rules include explicit character or word counts, despite such tokens never appearing in the
prompts or training data. This suggests the model has learned to treat conciseness as a proxy for quality,
successfully aligning with the reward design. Moreover, because the model’s reasoning capability is constrained
by token limits, generating more concise rules makes them more effective and efficient to apply during inference
and to further merge during training.

Second, while we included “[NO MERGE]” as a special token to discourage inappropriate merges, the model
never outputs it. This likely reflects a limitation of DPO, which optimizes relative preferences between outputs
rather than teaching absolute behaviors. Since abstaining requires a more categorical shift in generation, DPO
alone may not provide strong enough signals to enforce it. To address this, we propose supplementing DPO with
supervised fine-tuning (SFT), which can explicitly teach the model when to output “[NO MERGE]” through
labeled examples.

Third, although many merged rules were valid and generalized well across structurally similar problems (see
Appendix [A.2] for an example), we also observed some cases where conceptually different problems were
inappropriately merged (see Appendix [A.3). The model occasionally produced divergent rules of the form “if A
— do step X1-X2, if B — do step Y1-Y>2”, combining unrelated reasoning paths into a single rule. This behavior
undermines interpretability and coherence, which are the core goals of the RINGER framework. It suggests that
the current training setup may not sufficiently penalize incoherent generalization.

8 Conclusion

This work demonstrates that a DPO fine-tuned Qwen-3-4B model can effectively replace a much larger 32B
model in the RINGER framework without compromising performance. Despite being trained and evaluated
on data from the same rule database, the smaller model achieves comparable accuracy (44/70 vs. 41/70)
while offering 7x faster computational time and more than 7x lower compute requirements. This scalability
breakthrough addresses RINGER’s primary bottleneck, its computational expense in rule construction, and
opens the door to applying RINGER to larger and more diverse CoT datasets. This, in turn, allows us to
evaluate its generalization and effectiveness on standard mathematical benchmarks such as MATH-500 and
AIME. Qualitative analysis further confirms that the fine-tuned model produces concise and generally valid rules,
significantly improving consolidation behavior over the pre-trained baseline.

Looking forward, two areas warrant further development. First, to prevent overgeneralized or divergent rules,
future experiment should filter out problem pairs involving dissimilar mathematical concepts, ensuring conceptual
consistency in rule merging. Second, to improve abstention behavior, DPO training should be augmented with
SFT, especially for [NO MERGE] cases where rule merging is inappropriate. These refinements will help build

cleaner, more interpretable rule databases and advance the goal of scalable, generalizable reasoning across
diverse mathematical tasks.

9 Team Contributions

 Yifan Zhang: Yifan Zhang was the primary contributor of this project. He was responsible for the
full research and engineering cycle, including preparing and processing the datasets, developing the
RL framework for fine-tuning the LLM, implementing the customized reward function (e.g., based
on Negative Log Likelihood and rule conciseness), running the model training and experiments, and
evaluating the system on mathematical reasoning benchmarks. Yifan was responsible for conducting
ablation studies, analyzing model performance, and producing all written deliverables, including the
proposal, milestone, poster, and final project report.

» Kezhen Chen: Kezhen Chen was this project’s external mentor, offering high-level feedback on RL
framework design, reviewing experimental methodology, and providing technical advice on RL and
LLM fine-tuning.

Changes from Proposal No change from proposal

References

(1]

(2]

(3]

(4]

(3]
(6]

Yifan Zhang and Kezhen Chen. Ringer: Reasoning at inference time with generalized rules. https://
drive.google.com/file/d/1sn8xVPNJgzcH2Lt6mDOprrXRC5p1PnNu/view?usp=sharing, 2025.
Stanford CS224N Custom Project Report.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea Finn.
Direct preference optimization: Your language model is secretly a reward model, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in
open language models, 2024.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao
Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou,
Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng,
Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li,
H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui
Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu,
Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang,
Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng
Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R.J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu
Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye,
Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun
Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen,
Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng
Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song,
Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao
Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi
Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X.
Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun
Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie,
Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement learning, 2025.

Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown, November 2024.
Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,

Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training
language models to follow instructions with human feedback, 2022.

10

https://drive.google.com/file/d/1sn8xVPNJgzcH2Lt6mDOprrXRC5p1PnNu/view?usp=sharing
https://drive.google.com/file/d/1sn8xVPNJgzcH2Lt6mDOprrXRC5p1PnNu/view?usp=sharing

[7] Teng Xiao, Yige Yuan, Huaisheng Zhu, Mingxiao Li, and Vasant G Honavar. Cal-dpo: Calibrated direct
preference optimization for language model alignment, 2024.

[8] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.

[9] Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann Singhal,
Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot? chain-of-thought helps mainly
on math and symbolic reasoning, 2025.

[10] Xinjie Zhao, Fan Gao, Xingyu Song, Yingjian Chen, Rui Yang, Yanran Fu, Yuyang Wang, Yusuke Iwasawa,
Yutaka Matsuo, and Irene Li. Reagent: Reversible multi-agent reasoning for knowledge-enhanced multi-hop
qa, 2025.

[11] Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao, and Min Lin. Chain of preference optimization:
Improving chain-of-thought reasoning in llms, 2024.

[12] openrl. Openrl-math-220k. https://huggingface.co/datasets/open-r1/OpenR1-Math-220k.
[13] huggingface. Math-verify. https://github.com/huggingface/Math-Verify.

[14] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge,
Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li,
Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang
Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren,
Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru
Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report, 2025.

[15] Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi Li,
Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa, Olli Saarikivi, Adil Salim,
Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli Yu, Cyril Zhang, and Yi Zhang. Phi-4 technical
report, 2024.

A Appendix

A.1 DPO Merge Rule Prompt
You are provided with two generalized problem-solving plans:

Retrieved Theory: a plan summarized from multiple samples or a plan derived from a single data
sample.
Existing Theory: a plan derived from a single data sample.

Retrieved Theory: {}
Existing Theory: {}

Your task is to **merge these two plans into one improved, structured theory that is strictly better
than either original plan.** The merged theory should be **comprehensive, logically structured, and adaptable™**
to different variations of the problem.

Key Merging Principles:

1. **Check Domain Alignment**: Only merge these plans if they address the **same or closely related**
problem types (e.g., both are Quadratic Equations, both are Logarithmic Equations).

2. **Branching for Different Domains**: If the plans solve **different** problem types (e.g., Algebraic
Factorization vs. Trigonometric Identities), keep them in **separate sub-plans** rather than forcing a single
unified flow.

3. **Avoid Over-Generalization**: If no meaningful overlap is found, do not merge. If only partial overlap
exists, unify **only** the steps that actually apply to both domains.

4. **Introduce Decision Points**: If multiple methods exist for the same type of problem, specify **when** to
use each approach.

5. **Concrete Steps**: For the domain you decide to merge, unify steps with **specific details**, avoiding
vague or overly broad instructions.

11

6. **Step Limit**: Ensure the total number of steps **does not exceed 20**. If a merged plan exceeds 20 steps,
prioritize key steps and remove redundant details. The returned theory should **NOT** exceed 1200 words
7. **Prefer Conciseness:** The merged rule should be **no more than 5000 characters**. Any extra characters
beyond this limit detract from effectiveness—Kkeep it as brief as possible while still correct and complete.

8. **Reject Unproductive Merges:** If merging the two rules does not lead to a clearer, more effective, or
logically coherent unified plan, do not force the merge. Instead, output exactly “[NO MERGE]*

**Format: **

Mathematical Category: [e.g., Algebra, Geometry, Probability, Calculus]

Solution Strategy: [Merged strategy, incorporating key aspects of both theories]
Mathematical Problem Scope: [Clearly state what type of problem this theory helps solve]
General Heuristic: [Summarized core approach that underlies the merged solution]

Core Steps

Each step should clearly state:

1. **What action is performed**

2. **Why it is necessary**

3. **Alternative approaches, if applicable®*

Merged Steps:

<Step1> [Action Name]

- [What to do]

- [Why this step is necessary]

- **Alternative Approach (if applicable)**

<Step2> [Action Name]

- [What to do]

- [Why this step is necessary]

- **Alternative Approach (if applicable)**

Decision Logic for Alternative Methods:
- **If Condition A — Use Method 1**
- **[f Condition B — Use Method 2**

Dependencies: [Define step relationships clearly]

Edge Cases Special Considerations:
- [Describe any special conditions where this theory needs modification]

Return only the newly formatted theory. Do not include explanations or extra comments.

A.2 Valid Rule Merging Example

original_questions:

1. 5.1. From point A to point B, which are 10 km apart, a car departed at 7:00. After traveling % of the distance,
the car passed point C, from which a cyclist immediately set off for point A. As soon as the car arrived at B, a
bus immediately departed from B in the opposite direction and arrived at A at 9:00.

At what distance from B did the bus catch up with the cyclist, if the cyclist arrived at point A at 10:00 and the
speed of each participant in the movement was constant?

2. Given that location C'is the midpoint between locations A and B. At 7:00 AM, car A departs from A heading
towards B, while car B and car C depart from B and C' respectively, heading towards A. When car A and car C
meet, car B has completed exactly % of the total distance.

Car C arrives at A at 10:00 AM, and at 10:30 AM, when car B reaches A, car A is still 84 kilometers away from
B.

What is the distance between A and B in kilometers?

rule:
Mathematical Category: Algebra
Solution Strategy: Relative Motion and System of Equations for Multi-Object Motion Problems

[TRUNCATED]

12

Core Steps

Step 1: Define Variables and Known Quantities

What to do: Assign variables to unknowns (e.g., total distance D, speeds of objects). Note all given numerical
and relational data.

Why: Establishes a clear framework for modeling.

Alternative: Use substitution or elimination directly if relationships are highly structured.

Step 2: Establish Equations Based on Motion Relationships
[TRUNCATED]

Dependencies Step 1 — Step 2 — Step 3 — Step 4 — Step 5 — Step 6
[TRUNCATED]

Final Output Word Count: 498
Final Character Count: 1,495

A.3 Invalid Rule Merging Example

original_questions:
1. Given the sequence {a,}, where a1 = 1, as = %, and any1 = % (n =2,3,4,---). (1) Find the

general term formula for the sequence {a, }; (2) Prove that forall n € N,
n
7
k=1

2. (an) is an arithmetic progression with a common difference of 1. It is known that S2¢22 is the smallest among
all S,, (less than the sum of the first n terms for any other value of n). What values can the first term of the
progression take?

rule:

Mathematical Category: Sequences, Series, and Calculus

Solution Strategy: Pattern Recognition, Inductive Proofs, Series Comparison, and Calculus Optimization

[TRUNCATED]

Core Steps

Step 1: Compute Initial Terms and Observe Patterns

What to do: Calculate the first few terms using the recursive formula.
Why: Identifies potential patterns or closed-form expressions.
Alternative: Use generating functions or characteristic equations.

Step 2: Hypothesize General Formula
[TRUNCATED]

Decision Logic for Alternative Methods

If Condition A — Use Method 1:

Sequence is recursive with a clear pattern = Use pattern recognition and induction.
If Condition B — Use Method 2:

Minimize sum of arithmetic progression = Use calculus and optimization.

If Condition C — Use Method 3:

Bound sum of squares = Use comparison test or integrals.

Dependencies
Step 1 — Step 2 — Step 3 — Step 6
Step 7 — Step 8 — Step 9 — Step 10 — Step 11

[TRUNCATED]
Final Word Count: 900 Character Count: 5901

13

	Introduction
	Related Work
	Preliminary Work
	Method
	DPO-Based Rule Merger Fine-Tuning
	Integration with the RINGER Framework

	Experimental Setup
	Data
	Evaluation Setting
	Experimental details

	Results
	Quantitative Evaluation
	Qualitative Analysis

	Discussion
	Conclusion
	Team Contributions
	Appendix
	DPO Merge Rule Prompt
	Valid Rule Merging Example
	Invalid Rule Merging Example

